
Mod Mission Setup

In this page you can find step by step instructions for how to setup your own mission. We’ll start with the broader side of things

and go more in depth as we go along.

Set up a Mod

Creating the Mod

Set up the Holo Table

Creating a level

Make Mission playable in Campaign

Creating a mission

Objectives

Objective Waypoint

Destroy Objective

Destroy Units Objective

Scan Objective

Destructible zone Objective

Timer Objective

Spawning AI

Track Unit Death/Damage

Waypoints

MoveToWaypoint

SmartObjectWaypoint

AttackWaypoint

JumpJet Links

Custom unitcards

Repair bays

Out of bounds system (OOB)

Artillery

Turrets

Turret variants

Popup Turrets in MissionScript

Capture turrets

Indestructible units

Gates

Hiding Mesh from Battlegrid

Proximity Mines

NIS (Level Sequences)

In game sequence

Cinematic sequence

Union ship Setup

Laser Fence

Ammo/Treasure Crates

Ammo Crate

Treasure Crate

AeroSpaceFighterSequence

BP_AeroSpaceFighterAttackSequence

BP_AeroSpaceFighterAttackSequence_Triggerable

Dialogue

Set up a Mod

Creating the Mod

At the top of the screen, click on Mod manager.

Click on New Mod.

A screen will pop up and it’ll ask you where to save the Mission. Keep the folder as is and give it a suitable name. Click on Basic

Mod and Create Mod should become clickable.

Click on Create Mod and it’ll ask you to restart Unreal.

Mod Manager button

New Mod button

Create Mod screen

Now you should have a Content folder in the Plugins folder that has the same name as what you named your Mod.

Set up the Holo Table

Create a KelCampaignTrigger Asset. That can be found under Kelpie. Open it up, change Valid Campaigns to

CoreGame_Attributes and Active to Always True.

Create a DataTable Asset as a KelLocaleDataAsset. Add a Display Name, Holotable Prop, Component Name, Scenario (Will be

created later, see ‘Make Mission Playable in Campaign’) and Trigger Asset. Component Name should be Planet to make it

appear.

Screen after creating Mod

Mod folder

KelCampaignTr

igger Asset

KelCampaignTrigger settings

Creating a level

I’ll explain here how to setup your level before actually going in and creating a playable mission.

I would start by creating a simple Folder structure that start with Missions or whatever name you prefer in case you want to

create multiple levels to play. In there create a folder with the actual name of your mission. That’s going to be the folder that we’re

working in. Right click anywhere in that folder and create your level. Create two folders, one for your sublevels and one for your

mission files.

For now add an existing sublevel for lighting, so we can see things. I’ve added L_Lighting_daytime_no_fog.

Kel Locale Data Asset

Kel Locale Data Asset settings

Simple setup with a folder for sublevels and a folder with your mission files

Add a landscape with a heightmap that you can sculpt in Unreal or import. Landscape resolution size is 4081 x 4081. Used the

material LandscapeTest_MTL from the project to see it properly.

Create a new Sublevel and name it as you see fit.

Add a lighting sublevel

Your editor should look something like this

Make sure that the Sublevels are set to Always Loaded, so it’s visible when you play the game.

Add a NavMeshBoundsVolume roughly the size of your map, so AI can move around.

Can find it here

Only visible in game when loaded

In your Missions folder, create a BP_KelMissionScript_Base and name it according to your mission.

Press P to see NavMesh when build

BP_KelMissionScript_Base is used to build your mission logic

After having created your MissionScript, drag it into your Gameplay level. Also drag in a CinematicStartEncounter.

Drag in 5 MWSpawnPoints and a BP_CinematicStartEncounterSequence. Assign them in your CinematicStartEncounter.

Assign the CinematicStartEncounter to your MissionScript.

Both in Gameplay Sublevel

Player squad spawn points and blueprint for cinematic mission

intro

Create a new folder for your Level Sequences. This project will need a sequence at the start of a mission to allow the mechs to

walk around. Create a new Level Sequence and add a Fade track of 1 second. You can create any intro you like later by changing

that sequence.

Add that Intro Sequence to your BP_CinematicStartEncounterSequence.

Now the Missionscript tells Players to spawn

New LevelSequences folder

Intro Sequence

Open your MissionScript and add this to play your Intro Sequence.

To setup the Editor to test what you’ve created, we’ll have to Override the GameMode in the World Settings to

BP_KelMissionScriptTestMode.

Assign it to the Sequence Asset in

BP_CinematicStartEncounterSequence

Start mission setup

Change GameMode to play in Editor

One final step before playing the mission. Make sure that the MissionScript and the Default Mission Start are selected here.

Make Mission playable in Campaign

Create an MW.AreaSpecification Asset. Level Path will be your Persistent Level. Mission Script will be the MissionScript you

created.

Create an MW.ScenarioSpecification Asset. Generate a Scenario Id, add a Mission Name and set Allowed Tonnage to 500 or

lower depending on what weight Mechs are allowed in your mission.

Select the MissionScript to tell the game to use your logic.

Set Area Spec Asset to the MW.AreaSpecification Asset that you created and the Trigger Condition to the KelCampaignTrigger

Asset you created.

Creating a mission

Objectives

Objective Waypoint

Drag in a trigger, make it quite big and make sure that Generate Overlap Events is true.

Scenario setup

Scenario setup with MW.AreaSpecification and KelCampaignTrigger

Open the MissionScript and create a new variable of type TriggerBase. Make that a Soft Object Reference.

From the event where you start your mission, add a node for Add Objective. Give it a Display Text(Will display objective text on

left hand side of the screen) and a Marker Class(Marker that appears in world). Good practice is to create a variable for that to

use it later if needed, but not obligatory.

Trigger in Gameplay level

Generate Overlap Events is true

Trigger Base Soft Object Reference

To make it appear on the trigger and resolve when the trigger is hit, we need to add a TrackVolumeEnteredByUnit node. Plug in

your trigger and objective variable to that node and it should look like this. You can add more logic that fires after that node or

when the trigger is hit by what is specified in the unit filter.

Assign the trigger to your TriggerBase variable in your MissionScript.

Add Objective

TrackVolumeEnteredByUnit

Destroy Objective

Drag in an object with a Destructible Component. In this case, I’ve used UTL_Industrial_Military_SatelliteDish.

In the MissionScript, create variables for your destructible actor and your objective. The destructible actor will be of type Actor

and a Soft Object Reference. The Objective variable will be of type MWObjective and an Object Reference.

In the Components tab, create a DestroyObjectivesTracker. Drag that into the Event Graph, get the Objectives to Detroy variable

from the Destroy Objectives tracker and add the Actor you want to destroy to that array.

Trigger assigned to TriggerBase variable

Destroy Objective variables

Create an Add Destroy Object Objective node, fill in the Display Text and the Marker Class. Plug in the variables for the Actors

to Destroy and Destroy Object Tracker. You could change the Progress Style to Progress Counter if you want it to count for

example, but not necessary.

Add the Destructible actor to your DestroyObjectiveActor variable in the MissionScript.

Bind and event to OnObjectivesDestroyed to Resolve the objective and add more things after the objective is finished.

Setup for tracking if an object is destroyed

Assign object to DestroyObjectiveActor variable in

MissionScript

Destroy Units Objective

Create an Add Objective node and fill in the Display Text. Everything else is optional, depending on what you want to do.

Plug in the MWObjective variable to the SpawnUnits node and it should track the units spawned.

Objective doesn’t resolve automatically

Add Objective node for tracking dead units counter

SpawnUnits node can track the destroyed units

Can also track the objective like this if you decide to Track the objective later, rather than immediately at spawn.

Scan Objective

Drag an actor with a KelScannableComponent in your level. In this example BP_GateTerminal

Create variables in your MissionScript for the Actor to scan and the scan objective.

Create an Add Objective node and set a Display Text. Everything else is optional.

Track Destroy Units Objective after units have spawned

Actor with KelScannableComponent

Variables for scan objective

Add a StartTrackingInteractionTasks node and plug in the ScanObjectiveActor and the ScanObjective.

Assign the Actor to scan to the ScanObjectiveActor variable in your MissionScript.

Destructible zone Objective

Before actually creating the objective, you need something to destroy. We can add a Garrison from MW5 Mercenaries in our level.

They can be found in this folder.

Add Objective node also used for Scan objectives

The scanning is tracked and objective completes when scanned

Actor to scan assigned to MissionScript

I recommend copying the Garrison that you like in your LevelInstance folder.

Open the level and delete the foliage and landscape. These actors aren’t used in clans, so won’t work.

Add it to your level as a sublevel and move it where you want it to be.

Garrisons can be found here

Garrison level copied

Selected Foliage and Landscape actors

Sublevel added

Add a BP_KelMissionObjectiveDestructibleZone to your level and put it on your Garrison. Change the radius to make it big

enough.

Go to Build and select Kel Build Map. This will build your destructibles and navigation at the same time.

Garrison in level

Destructible zon placed around Garrison

Select your BP_KelMissionObjectiveDestructibleZone and click on Generate to make sure that it registers the destruction. Also

set it to hostile if you want friendly mechs to target the buildings.

Create a SoftObjectReference variable for your Destructible zone of type BP_KelMissionObjectiveDestructibleZone. This time

make it a set. Also a variable for your MWObjective.

Kel Build Map can be found

in Build

BP_KelMissionObjectiveDestructibleZone settings

Destructible zone objective variables

Create a new Add Objective and fill in the Display Text.

Add a Track Destructibles node, plug in your Destructible zone and objective variables. Give the Destruction Meter a name to

tell players what they’re destroying and set a Destruction Complete Target of when the objective completes. As you can see in

the image, you can fire logic after certain percentages of destruction.

Assign the BP_KelMissionObjectiveDestructibleZone to your MissionScript.

Objective for Destructible zone

Destructible zone objective

Timer Objective

In the MissionScript, create an Add Timer Objective node. Fill in the Display Text, Time in Seconds and Time Expired

Resolution.

Spawning AI

Spawn enemies by placing Unitcards in your level. You can tell them to AutoSpawn, but I recommend telling them to spawn

through the MissionScript. That way they can spawn in when you need them. I recommend after spawning a unit to have them

walk to a Waypoint and then an AttackWaypoint to help them get out of their spawn location. Waypoints are explained in the

Waypoint section.

Destructible zone assigned in MissionScript

Timer objective setup

Fill in the details for the Unit behaviour. Most important are the Team, Attitude, Behavior Config and Sequence List.

Team (Hostile, Neutral or Friendly)

Attitude (Passive or Aggressive behavior)

Behavior Config (Difficulty)

Sequence List (Movement and Targeting)

Create a variable of type KelUnitSpawner as a SoftObjectReference. Use a SpawnUnits node in MissionScript to spawn them.

Mech UnitCards

UnitCard settings

Assign the units to your KelUnitSpawner variable in your MissionScript.

There’s a couple of locations that enemies can spawn from.

Hide them (Use explanation above)

Dropship:

2 Dropships that work exactly the same way BP_SpawnSequence_LeopardDrop(Inner Sphere Mechs Max 4) and

BP_SpawnSequence_BroadswordDrop(Clan Mechs Max 5). Assign the Unitcards that you want to drop out of the ship and

follow the instructions above.

SpawnUnits node

Array of UnitCards

Both available dropships to spawn

Spawn Door:

Drag a BP_SpawnSequence_MegaFactoryDoor in your level and assign the Unitcards that you want to spawn.

Spawn Garages:

Drag a BP_SpawnSequence_GroundGarage into your level and assign the Unitcards that you want to spawn.

Assign Mechs to the dropship

Spawn Door in level

Assigned Unitcards to Spawn Door

Track Unit Death/Damage

You can track the units death after they’ve been spawned already with Track Unit Death.

Pass through (Can continue the fire logic after firing this node)

Unit Death (Can fire logic each time a unit dies that’s tracked)

All Units Dead (Can fire logic when all tracked units are dead)

Dead Enemy (Retrieves the actor that died)

Total Dead (Counter for amount of Units Died)

Percentage Dead (Percentage dead of the total tracked Units)

Spawn garage in level

Assigned Unitcards to Spawn Garage

Can also track units damage after they’ve spawned with Track Unit Damage.

Pass through (Can continue the fire logic after firing this node)

Unit Damage (Can fire logic each time a unit that’s tracked receives damage)

Damaged Unit (The tracked unit that received damage)

Damage (Damage received)

Accumulated Damage (Total damage received)

Critical Health Percent (Unit at critical health)

Waypoints

MoveToWaypoint

The name kind of explains it. It’s a waypoint that the unit moves to. Can do a couple of things and I’ll got through each one of

them.

Assigned Actor (Not used with this Waypoint)

Switch To (UnitCards have usually have Waypoints in Sequence, this allows the unit to move to a Waypoint that’s not in that

Sequence)

Start Attitude (This is the Units Attitude when it is moving to this Waypoint)

End Attitude (Attitude when the Waypoint is reached)

Start Perception Config (Not used)

End Perception Config (Not used)

Hold Delay (Amount of seconds before going to the next Waypoint 0.0 = infinite)

Hold Damage (Amount of damage before moving to the next Waypoint)

Track Unit Death node

SmartObjectWaypoint

This Waypoint can do things to make the unit feel more smart. In my example, I’ll use the GuardPoint, but I’ll go through all of

them. Same settings as a regular Waypoint, but now we can use Assigned Actor.

Assigned Actor (Assign a Smart Actor to have the unit act different from Perceiving and attacking)

Switch To (UnitCards have usually have Waypoints in Sequence, this allows the unit to move to a Waypoint that’s not in that

Sequence)

Start Attitude (This is the Units Attitude when it is moving to this Waypoint)

End Attitude (Attitude when the Waypoint is reached)

Start Perception Config (Not used)

End Perception Config (Not used)

Hold Delay (Amount of seconds before going to the next Waypoint 0.0 = infinite)

Hold Damage (Amount of damage before moving to the next Waypoint)

MoveToWaypoint

MoveToWaypointSettings

The Smart Actors have different uses.

GuardPoint (Has the unit wait for the Hold time specified and look left and right)

ParkingSpot (Unit can’t move from here unless told otherwise)

Melee Target (Will melee targets within range of this Waypoint)

LandingPad (Only for VTOLS and works similar to the ParkingSpot)

LookAtPlayer (Unit will focus attention on the Player)

AttackWaypoint

You want to use this one on all your AI that needs to attack. Anything that gets in the radius of this Waypoint will be selected as a

target. This prevents AI from just standing around. Some extra functionality has been added to the AttackWaypoint.

Assigned Actor (Not used with this Waypoint)

Switch To (UnitCards have usually have Waypoints in Sequence, this allows the unit to move to a Waypoint that’s not in that

Sequence)

SmartObjectWaypoint

SmartObjectWaypoint used with a GuardPoint

Start Attitude (This is the Units Attitude when it is moving to this Waypoint)

End Attitude (Attitude when the Waypoint is reached)

Start Perception Config (Not used)

End Perception Config (Not used)

Hold Delay (Amount of seconds before going to the next Waypoint 0.0 = infinite)

Hold Damage (Amount of damage before moving to the next Waypoint)

The new functionality gives a little bit more freedom in attack behavior.

Hold Position (Will stay in the same location when Waypoint has been reached)

Combat Range Override (Usually AI uses the radius from the AttackWaypoint as combat range, but this overrides that with this

range instead)

AttackWaypoint

Same options to change as other Waypoints

JumpJet Links

Some mechs can use JumpJets. We can force them to use those to jump over obstacles or jump down ledges.

Drag in a UnitCard with JumpJets and set it up to spawn when you need it.

I recommend setting the Initial Attitude to either Safe or Passive, so it won’t start attacking and moves away from its path. Give

it a MoveToWaypoint to tell the unit where it should move to. Give it an AttackWaypoint as well to tell it to attack when the

destination is reached. Set the End Attitude on the MoveToWaypoint to Aggressive to have it attack.

Extra functionality AttackWaypoint

Unit with JumpJet

Settings for UnitCard

Settings for MoveToWaypoint

Unit path setup to move towards the ledge

Drag a KelJumpJetNavLinkProxy into your level. It has a Left and Right handle to manipulate. When you drag it in, it should sit

quite flush with the Landscape.

We should be able to click on one of the handles and move it around. Move the handle to the surface that the mech comes from,

the ledge in my example. Make sure that it intersects with the landscape mesh, so it can influence the NavMesh. Put it in the

unit’s path, so it will hit it when it moves to the destination. I usually put three KelJumpJetNavLinkProxy’s there, so it hits it even

when the unit’s path slightly gets adjusted. Use KelBuildMap to build your navigation and then the KelJumpJetNavLinkProxy

should look like this when you press P.

Custom unitcards

I recommend creating a separate folder for your custom units in your Mission folder.

Copy any Unitcard that you want to customize into that folder.

Active KelJumpJetNavLinkProxy

Folder for units specific to this mission

You can customize the unit to be what you need for your level. I’ll go through any settings you can change. Anything that isn’t

mentioned, shouldn’t be touched.

Mech Loadout Template (Copy this file and change it to the loadout that you want)

Mech Starting Structure Damage (Start the Mech with internal structure damage)

Mech Starting Armor Damage (Start with the Mech having damaged armor)

Mech Startin Rear Armor Damage (Start with the Mech having rear armore damage)

AIBehaviour Config (This file can also be copied and adjusted to make it specific to this unit, variables such as health and

accuracy are available in there)

Persona Asset (Pilot that speaks in conversations if that’s setup for the character)

Unit Skin Customization (Can change skin or colors of the Mech)

Unit Quirks (Quirks can make your unit much stronger or weaker, double the damage it inflicts for example)

In the Mech Loadout, there are settings for structure health, armor and weapons.

Copied unitcard to use as a Boss unit

UnitCard settings

Loadout Structure settings

Loadout Armor settings

Weapon group settings

Repair bays

Sometimes we want to repair a mech mid mission. We can do that with a MobileRepairBase actor. Drag one into your level and

set Is Powered to true to make it work.

There are some settings you can change to make it function as you like.

Ammo Resupply (Percentage of ammo resupply)

Armor Repair (Percentage of armor repair)

Uses (Number of times this repair bay can be used)

Is Powered (Active or Inactive state)

Infinite Uses (Repair bay has inifinite uses or not)

More Weapon group settings

MobileRepairBase

You can also change settings in the MissionScript, but all you probably need is know how to activate and deactivate it. Start by

creating a variable of type MobileRepairBase and make it a SoftObjectReference.

From the variable, call Manage Power and set Is Powered to true or false. Depending if you want to activate or deactivate it. In

my example, I scan an actor and it activates the Repair bay.

Assign the MobileRepairBase to your MissionScript.

MobileRepairBase settings

MobileRepairBase variable

Scan an actor to activate repair bay

Out of bounds system (OOB)

Create a spline that covers the whole play area. Make sure that the spline sits flush with the landscape mesh and is set to Loop.

While the spline is selected, go to MeshSplines. Change the Thickness to 1 and Output Type to Volume. Then Volume Type to

KelMissionAreaVolume.

MobileRepairBase assigned to MissionScript

Spline covering gameplay space

Every spline point is flush against the landscape

Click accept and it should create the KelMissionAreaVolume.

Make sure it’s selected in the Outliner and click on GenerateMissionAreaMesh to create a Mesh Actor in the root of the mission

folder. Save that Mesh.

Settings for OOB Mesh

Button to create KelMissionArea Mesh

You can create more than one and activate them when needed to open up more Gameplay space for example. Just make sure

that the first active KelMissionAreaVolume is Enabled and the other ones Disabled.

To change which one is active during runtime, you can Enable and Disable them as needed. One should be active at all times, so

enable the new one before you disable the old one with Enable Mission Area.

Assign the KelMissionAreaVolume to your MissionScript.

Artillery

Start by putting an Artillery in your level and setting that up. Only settings to worry about are in Allegiance. Set it to Hostile and

set Can Target when Hostile to true.

Mesh will be in your Mission root folder

KelMissionAreaVolume Enabled

Enabling new MissionAreaVolume

KelMissionAreaVolume assigned to MissionScript

We’re going to put in a zone where the Artillery will be firing next. Put a BP_ArtilleryBombardmentZone in your level where you

want it to fire.

Artillery

Artillery settings

To make it function, Assign the Artillery in your level to Artillery Source Soft and set Auto Start to true. There are also settings

that you can change and you can activate it in script when you need it.

Artillery Source Soft (Artillery firing, when Artillery is destroyed, firing will stop)

Explosion Class External (The actual explosion when it hits, don’t need to change this)

Auto Start (Will start firing automatically when mission starts)

Radius (Radius of where explosions can hit)

Bombing Interval in Seconds (Amount of seconds between each explosion interval)

Num Bombs Per Interval (Number of explosions per interval)

Max Random Bomb Launch Delay (Random delay between each explosion in an interval)

To activate it in MissionScript, create a variable for the Bombardment zone of type BP_ArtilleryBombardmentZone as a

SoftObjectReference.

BP_ArtilleryBombardmentZone

BP_ArtilleryBombardmentZone settings

BP_ArtilleryBombardmentZone variable

Drag it into the Event graph and call Set Enabled from it.

Assign the BP_ArtilleryBombardmentZone to the MissionScript.

Turrets

Turret variants

We’ve got many different types of turrets and I recommend to try them all out to create the gameplay that you like. I’ll go through

what different setups we have for them.

Regular Turret (Place in a level and it fires what type of weapon it has)

Turret Tower (Same as a regular turret, but on a tower)

Turret Popup (Turrets that can pop out of the ground or walls when a hostile is close enough)

Enable BP_ArtilleryBombardmentZone in MissionScript

Assigned BP_ArtilleryBombardmentZone to

MissionScript

Popup Turrets in MissionScript

Popup Turret Unitcards that are named Triggered, can be activated in the MissionScript. Create a variable of type

KelUnitSpawner and make it a SoftObjectReference that references the Popup Turret Triggered Unitcard.

Call Activate Popup Turrets in the Eventgraph

The three different turret variations

Same as other UnitSpawners

Popup turret triggered unitcard

Assign the Popup turret triggered unitcard to the MissionScript.

You can also deactivate the PopupTurrets by calling Deactivate Popup Turrets in the MissionScript.

Capture turrets

Players can turn hostile turrets into friendly turrets. Start by dragging a UTL_GPL_Military_Industrial_SmallTurretControlTower

in your level. To prevent it from being destroyed, I usually put a BP_TurretControlTower_Bunker on top of it.

Popup turrets activation in MissionScript

Popup Turret Triggered unitcard assigned to MissionScript.

Deactivate Popup Turrets

You should have some turrets in your level by now and if not, drag a couple of regular turrets in and spawn them. You can assign

them to Linked Turret Spawners in UTL_GPL_Military_Industrial_SmallTurretControlTower.

Create a variable for the UTL_GPL_Military_Industrial_SmallTurretControlTower in the MissionScript as type Actor and make it a

SoftObjectReference.

Call Start Tracking Interaction Tasks and plug in the Turret control tower to Tasked Actors.

Turret control tower with bunker

Assigned turrets to

UTL_GPL_Military_Industrial_SmallTurretControlTower

Variable for

UTL_GPL_Military_Industrial_SmallTurretControlTowe

r

Indestructible units

In the MissionScript, you can make units indestructible with a KelIndestructibleScript Component. Create the component.

In the Details panel, you can tell it which units should be indestructible. Add them to the Spawner List.

Drag KelIndestructibleScript in the Eventgraph and call Request Indestructible from it.

Setup for capturing Turrets

KelIndestructibleScript

List to tell what units can be indestructible

Set to true to make units indestructible

Gates

We can open and close gates. There are a couple to choose from, but I’ll be using BP_Space_Station_Gate for this example. Drag

one into your level. I’ve also grabbed a cube for each side to block the path and make it actually function as a Gate.

I’ve also added a BP_Gate_Terminal to scan when opening and closing the Gate. Not necessary to do it this way, but makes

sense for the example. I also changed some settings in the terminal to open and close the Gate. In the KelScannableComponent,

set Interaction|NumSectionRequired to 1, so it’s easier to use. Set Interaction|bDestroyScanComponentAfterInteraction and

Interaction|bIsOneTimeInteraction to false.

Gate

Gate Terminal to scan

Create two SoftObjectReference variables in the MissionScript, one for the Gate Terminal of type Actor and one for the Gate of

type BP_Space_Station_Gate.

Create an event and call Start Tracking Interaction Tasks. Plug in the Gate Terminal variable.

To open and close the Gate, I’ve added a FlipFlop to switch between events. Output A calls Open Door from the Gate and Output

B calls Close Door from the Gate. The sequence is there, so I can reset the Interaction after 5 seconds, giving the Gate time to

open and close.

Gate Terminal KelScannableComponent settings for following example

Variables for opening and closing gate example

Interaction setup for scanning Gate Terminal

Hiding Mesh from Battlegrid

Some levels might have a roof. Could be a structure or maybe a cave. The roof will prevent the players to issue commands in the

Battlegrid. We can exclude meshes, so the Battlegrid doesn’t try to use it.

We have to change some collision settings to exclude it. Set Collision Presets to Custom and set Visibility to Ignore.

Gate setup to Open and Close after scanning the Terminal

Roof

Proximity Mines

You can place Proximity Mines either Friendly or Hostile, depending on the gameplay you want.

Collision with custom settings

Custom collision settings to exclude mesh from

Battlegrid

Here are some settings that you can change and where you can set the team to be Hostile or Friendly. Hostile in my example. The

settings that I haven’t mentioned here, shouldn’t be touched.

Explosion Radius (Radius of how far the explosion will reach)

Explosion Damage (How much damage the explosion will inflict)

Explosion Delay (Amount of settings for the explosion to trigger after mine had been triggered)

Health Points (Amount of damage required to destroy the mine)

Team Membership (Set the mine to Hostile or Friendly here)

NIS (Level Sequences)

In game sequence

Create a Level Sequence and create in there what you would like to happen. I usually create a separate folder for my Level

Sequences, so they’re easy to find. For this example, I’m just going to copy having a Union ship land.

Proximity Mine

Proximity Mine settings

Drag a KelGameplaySequence in your level. Select the Level Sequence you created in Sequence Asset.

Create a variable of type KelGameplaySequence as a SoftObjectReference.

Get the Sequence Player from the variable and call Play.

New Level Sequence in LevelSequence folder

KelGameplaySequence

Assigned Level Sequence to Sequence Asset

KelGameplaySequence variable

Assign the KelGameplaySequence to the MissionScript.

Cinematic sequence

Create a Level Sequence and create in there what you would like to happen. I usually create a separate folder for my Level

Sequences, so they’re easy to find. For this example, I’m just going to copy having a Union ship land.

Drag a BP_CinematicSequence in your level. Select the Level Sequence you created in Sequence Asset.

Call Play from the Sequence Player

Assigned the KelGameplaySequence to the MissionScript

New Level Sequence in LevelSequence folder

Create a variable of type BP_CinematicSequence as a SoftObjectReference.

Call Enter Cinematic Presentation State and Play from the BP_CinematicSequence variable.

Bind an event to Sequence Finished and call Exit Cinematic Presentation State to continue gameplay.

BP_CinematicSequence

Assigned Level Sequence to Sequence Asset

BP_CinematicSequence variable

Call Enter Cinematic Presentation State and Play

Union ship Setup

Drag a BP_UnionBoss into your level. It has some settings to adjust it to your gameplay. The settings that I won’t mention aren’t

used to setup gameplay.

Turrets HP (Amount of health for each Turret)

Turret Explosion Damage (Amount of damage it inflicts to the Union when Turret is destroyed)

Team Attitude (Change Union to Hostile or Friendly)

Clan (Change Union Skin)

Mech 1 to 4 (What Mechs it can spawn)

Turrets 1 to 8 (Select what UnionBoss Turrets to spawn)

Exit Cinematic Presentation State to continue gameplay

BP_UnionBoss

Create a SoftObjectReference variable of type BP_UnionBoss.

From the BP_UnionBoss variable, call Spawn Turrets.

BP_UnionBoss settings

BP_UnionBoss Turrets

BP_UnionBoss variable

You can also spawn Mechs from the Union. Call Open Doors and Spawn Mechs from the BP_UnionBoss variable.

Assign the BP_UnionBoss to the MissionScript.

Laser Fence

This will allow for triggering an alarm when a fence has been hit. Drag in a BP_Scannable_TripwireBeacon and copy that until

they form the shape of the area that you want to guard. Then assign the Connected Beacons to them in order to form your shape.

You can turn Debug Show Connection on to see the fence.

Enabled (Fence is active and can trigger the alarm)

Connected Beacons (Assign the next BP_Scannable_TripwireBeacon here)

Regenerate Link (Fence stays active after it’s triggered)

Call Spawn Turrets

Call Open Doors and Spawn Mechs

Assigned BP_UnionBoss to the MissionScript

Beam Color (Color that you want the fence to be)

Debug Show Connection (Can see fence in editor)

Put a NavModifierVolume around the area that’s guarded, so other AI doesn’t trigger it. Set Area Class to

AvoidenceArea_VeryHighCost.

BP_Scannable_TripwireBeacon

Copied BP_Scannable_TripwireBeacon until it forms the

shape that I need

BP_Scannable_TripwireBeacon settings

KelBuildMap to make sure the navigation will use your NavModifierVolume.

Drag a BP_AlarmTrigger_Manager into your level. Assign the BP_Scannable_TripwireBeacons and the NavModifierVolume.

NavModifierVolume

NavModifier settings

Navigation after KelBuildMap

In the MissionScript, create a SoftObjectReference variable of type BP_AlarmTrigger_Manager.

Bind an event to On Alarm Triggered and you can fire what logic you want happening after.

Assign the BP_AlarmTrigger_Manager to the MissionScript.

BP_AlarmTrigger_Manager

BP_AlarmTrigger_Manager settings

BP_AlarmTrigger_Manager variable

Bind event to On Alarm Triggered

Ammo/Treasure Crates

Ammo Crate

An Ammo Crate is called a Resupply Actor. Drag it in your level and it works. There are some settings that you can change.

Refill Percentage (Amount of ammo to replenish)

Uses (Amount of times this crate can be used)

Infinite Uses (Check this box for infinite uses)

Treasure Crate

Drag a TreasureActor in and it should work. A separate actor tells it what treasure it contains.

BP_AlarmTrigger_Manager assigned to MissionScript

Resupply Actor

You can create a KelMetaRewards Asset in your Mission folder. Inside this asset, you can add rewards for the player to receive

when scanning a TreasureActor.

AeroSpaceFighterSequence

BP_AeroSpaceFighterAttackSequence

You can add some flying Shilones or Jagatai to the mission. Drag a BP_AeroSpaceFighterAttackSequence into your level.

Assign Shilone or Jagatai Unitcards to Slot 1,2 and 3. There’s a Box component attached to this actor. You can size the box to the

size that you need. When a player is inside, it will Play the sequence for the Aerospacefighters.

Treasure Actor

Reward example in KelMetaRewardsAsset

BP_AeroSpaceFighterAttackSequence_Triggerable

Use this AeroSpaceFighter Actor to trigger in the MissionScript when needed. Drag a

BP_AeroSpaceFighterAttackSequence_Triggerable into your level.

BP_AeroSpaceFighterAttackSequence

Shilone Unitcards assigned

Each Unitcard assigned to a slot

Assign Shilone or Jagatai Unitcards to BP_AeroSpaceFighterAttackSequence_Triggerable.

Create a SoftObjectReference variable of type BP_AeroSpaceFighterAttackSequence_Triggerable in the MissionScript.

Call Play Looping from the Sequence Player to trigger when you need it.

BP_AeroSpaceFighterAttackSequence_Triggerable

Assigned Unitcards to

BP_AeroSpaceFighterAttackSequence_Triggerable

Assigned Unitcards to a Slot

BP_AeroSpaceFighterAttackSequence_Triggerable

variable

Assign BP_AeroSpaceFighterAttackSequence_Triggerable to the MissionScript.

Dialogue

Create a folder for your dialogue files. In that folder, create an MWDialogueBook Asset. In this file, you can add your lines. Fill in

Persona and choose any character that you want to speak. Caption to fill in the line that you want the character to say. Give it a

Name, we’ll need this to tell what line we’re talking about.

Call Play Looping from Sequence Player

Assigned BP_AeroSpaceFighterAttackSequence_Triggerable to

the MissionScript

MWDialogu

eBook

Asset

Create a KelConversationAsset and open it. You’ll need one of these for each conversation in your mission. In sequence, tell it to

Play and add one of the lines from the MWDialogueBook to the Dialogue Line Name. Continue adding lines to finish the

conversation that you want to play.

Call PostDialogue in the MissionScript. In Mission Dialogue Asset, you can choose the KelConversationAsset you created. Now

it should play the conversation when you need it.

MWDialogueBook settings

KelConversationAsset settings

PostDialogue in MissionScript

